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Introduction

The notes that follow are a summary of the Undergraduate Reaseach Assis-
tantship that I held during the Spring 2019 term under Professor Laurent Mar-
coux. The majority of the term was spent studying the Almost Invariant Sub-
space Problem, first introduced by Androulakis et al. in [1], and as such, these
notes will closely follow the series of papers published after the original paper in
2009. Many of the proofs presented below are taken from their original sources,
but with more details added to increase clarity.

In addition to the results of [1] [2] [3] [4] [5] [6] [7] [8] , we will make some
comments of extending ideas to an almost invariant setting. While seeming
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promising at first, they quickly prove to have several issues which will be dis-
cussed in these notes. We will also note some questions of interest and some
partial answers to them. The notes conclude with sections regarding notions of
reflexivity and hyperreflexivity, following Conway [9].

These notes are subject to error both typographically and stylistically. I hope
to fix any that I come across to improve the clarity of the material.

Throughout these notes, a subspace of a Banach space will always refer to a
norm-closed subspace. Additionally, for a Banach space X, we will represent
scalar operators of the form αI P BpXq simply by α.

Basic Ideas and Definitions

Definition 1.1. A subspace Y of a Banach space X is called a half-space if
it is of both infinite dimension and infinite codimension in X.

Definition 1.2. If T P BpXq and Y is a subspace of X, then Y is called almost
invariant under T or T -almost invariant, if there exists a finite dimensional
subspace F of X such that

TY Ď Y ` F. (1)

We call any subspace F satisfying Equation (1) an error space of Y for T . If
Y is T -almost invariant, we call the minimal dimension of an error subspace the
defect of Y for T . An error subspace F with dimension equal to the defect
will be referred to as a minimal error subspace.

In contrast to the Invariant Subspace Problem which asks the question: Does
every operator on an infinite dimensional Banach space have an invariant sub-
space? The Almost Invariant Subspace Problem asks: Does every operator
on an infinite dimensional Banach space have an almost invariant half-space?.
We note that only half-spaces are considered here as a result of the following
lemma.

Lemma 1.3. Let X be a Banach space and T P BpXq. If Y is a subspace of X
which is not a half-space, then Y is T -almost invariant.

Proof. Since Y is not a half-space, it either is finite dimensional or finite codi-
mensional in X.

Suppose Y is finite dimensional, then so is TY , and TY Ď Y ` TY .

If Y is finite codimensional in X, then there exists a finite dimensional subspace
Z such that X “ Y ‘ Z. Clearly we have TY Ď X “ Y ` Z.
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We note a relationship between almost invariant half-spaces and invariant half-
spaces modulo a finite rank perturbation.

Proposition 1.4. Let T P BpXq and Y Ď X be a half-space. Y is T -almost
invariant if and only if Y is T `K-invariant for some finite rank operator K.

Proof. Suppose that Y is T -almost invariant. Let F be a minimal error subspace
of Y for T . We first show that the sub Y ` F is direct.

Suppose that there exists some x P Y
Ş

F . Since F is finite dimensional, we
may extend x to a basis tx, x2, ¨ ¨ ¨ , xnu of F . Let F0 “ spantx2, ¨ ¨ ¨ , xnu. It is
clear that TY Ď Y ` F0, contradicting the minimality of dimF .

Let P be the projection

P : Y ‘ F Ñ F

y ` f ÞÑ f.

It is clear that P is a finite rank operator. With a choice of basis for F and
repeated applications of the Hahn-Banach Theorem, we may extend P such that
it acts on all of X. This extension, P̃ is also a finite rank operator and satisfies
P̃ |Y`F “ P .

Define K “ ´P̃ T . K has finite rank since P̃ does and for y P Y , we have that
for some y1 P Y and f P F ,

pT `Kqy “ Ty ´ P̃ Ty “ y1 ` f ´ P̃ py1 ` fq “ y1 ` f ´ f “ y1 (2)

Hence Y is T `K-invariant for some finite rank operator K.

To see the converse, we note that if Y is T `K-invariant, then pT `KqY Ď Y .
It follows that TY Ď Y `KY . Since KY is finite dimensional, Y is T -almost
invariant.

An important result is that if an operator has an almost invariant half-space,
then so does its adjoint. To show this, we require a couple of lemmas.

Lemma 1.5. Let X be a Banach space and Y Ď X be a subspace. Then Y is
infinite codimensional in X if and only if Y K is infinite dimensional. In partic-
ular, Y is a half-space if and only if both Y and Y K are infinite dimensnional.

Lemma 1.6. Let X be a Banach space and Y Ď X be a subspace. Y is a
half-space if and only if Y K is a half-space (in X˚).

Proof. Suppose that Y is a half-space, by Lemma 1.5, Y K is infinite dimensional.
Consider the isomentric embedding ι : X Ñ X˚˚. We see ιY Ď pY KqK, so pY KqK

is also infinite dimensional. Lemma 1.5 shows that Y K is a half-space.

Suppose instead that Y K is a half-space, then Y K is infinite codimensional. It
follows that Y must also be infinite dimensional. To see this, note that given
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an m-dimensional subspace K of X with basis tx1, ¨ ¨ ¨ , xmu, by the Hahn-
Banach Theorem, we may construct linear functionals x˚1 , ¨ ¨ ¨ , x

˚
m such that

x˚i pxjq “ δij . Let L “ spantx˚1 , ¨ ¨ ¨ , x
˚
mu, we will show that X˚ “ KK ‘ L.

First, it is clear that KK
Ş

L “ t0u as each x˚i does not annihilate K. For
x˚ P X˚, we can take y˚ “

řm
i“1 x

˚pxiqx
˚
i P L. We see x˚ ´ y˚ P KK, showing

the contrapositive.

Lemma 1.5 shows that Y is also infinite codimensional, and hence Y is a half-
space.

The previous lemmas now allows us to show that if T P BpXq has an almost
invariant half-space, then so does T˚.

Proposition 1.7. Let T P BpXq. If T has an almost invariant half-space with
defect k, then so does T˚.

Proof. Let Y be a T -almost invariant half-space and let F be a minimal error
space. By the proof of Proposition 1.4, the sum Y ` F is direct. Since F is
finite dimensional, we can consider its complement W satisfying X “ W ‘ F .
We see that Y ĎW and that WK is finite dimensional.

Consider pY `F qK Ď X˚. Since F is finite dimensional, Y `F and pY `F qK are
also half-spaces. Given z˚ P pY `F qK and y P Y , we have T˚z˚pyq “ z˚pTyq “ 0
since Ty P Y `F . It follows that T˚pY `F qK Ď Y K. We want to show that T˚-
almost invariance of pY `F qK and it suffices to show that Y K “ pY `F qK`WK.

It is clear that pY ` F qK Ď Y K. Also, Y Ď W implies that WK Ď Y K and so
pY ` F qK `WK Ď Y K.

For the other containment, we consider a basis tf1, ¨ ¨ ¨ , fmu of F and biorthogi-
nal functionals

 

f˚1 , ¨ ¨ ¨ , f
˚
m

(

in WK. Such functionals may be constructed by
the Hahn-Banach Theorem. Each f˚i P Y K and so for x˚ P Y K, we have
x˚´

řm
i“1 x

˚pfiqf
˚
i P pY `F q

K. This shows that x˚ P pYF q
K`WK, completing

the proof.

We note that if we consider a Hilbert space H instead, that Proposition 1.7
follows by taking Y K to be the T˚-almost invariant half-space.

Proofs for Certain Classes of Operators

For an operator T P BpXq, a non-zero vector e P X, and λ P ρpT q, we may
define a vector hpλ, eq P X by

hpλ, eq “ pλ´ T q´1e.
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If |λ| ą sprpT q, then the power series

hpλ, eq “
8
ÿ

n“0

λ´n´1Tne. (3)

Note that e “ pλ´ T qhpλ, eq, rearranging this yields

Thpλ, eq “ λhpλ, eq ´ e. (4)

Equation (4) gives the following result.

Lemma 2.1. Let X be a Banach space, T P BpXq, 0 ‰ e P X and A Ď ρpT q.
Set

Y “ spanthpλ, eq : λ P Au. (5)

Then Y is a T -almost invariant subspace with TY Ď Y ` spanteu.

We would like to use Lemma 2.1 to construct almost invariant half-spaces for
certain operators. The first set of operators we work on include quasinilpotent
weighted shifts.

Definition 2.2. A sequence txnun in a Banach space X is called minimal if
xk  P rxnsn‰k for each k.

Lemma 2.3. A sequence txnun in X is minimal if and only if there exists a
sequence tx˚nu of biorthogonal functionals in X˚.

Proof. Suppose txnun is minimal. For each k, we can define the subspace Ek “
rxnsn‰k. By minimality, each Ek does not contain xk. By the Hahn-Banach
Theorem, we may construct the desired biorthogonal functionals tx˚nu.

Conversely, fix k, and consider some z P Fk “ spantxn : n ‰ ku. We may write
z “

řm
j“1 cnj

xnj
, then x˚kpzq “ 0. By the continuity of x˚k , x˚kpxq “ 0 for all

x P Fk. By definition, we have x˚kpxkq “ 1, so xk  P Fk and hence the sequence
txnun is minimal.

The following results will be important in showing the existence of almost in-
variant half-spaces of the operators.

Lemma 2.4. Given a sequence trnun of positive real numbers, there exists a
sequence tcnun of positive real numbers such that the series

ř8

n“0 cnrn`k con-
verges for each k.
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Proof. For each n, take cn “
1
2n min

!

1
r0
, ¨ ¨ ¨ , 1

r2n

)

. If n ě k, then n` k ď 2n,

and hence cnrn`k ď
1
2n . It follows that

8
ÿ

n“0

cnrn`k ď
k´1
ÿ

n“0

cnrn`k `
8
ÿ

n“k

1

2n
ă 8. (6)

Theorem 2.5 (Great Picard Theorem). If f is a complex-analytic function
with an essential singularity at z, then on any punctured neighbourhood of z, f
takes on all complex values, except at most one, infinitely often.

Using these results, we may show the existence of almost invariant half-spaces
for certain classes of operators.

Theorem 2.6. Let X be a Banach space and T P BpXq. Suppose that T satisfies

a) the unbounded component of ρpT q contains a punctured open disk centered
at 0;

b) there exists a vector e P X whose orbit tTneun is a minimal sequence.

Then T has an almost invariant half-space.

Proof. Since tTneun is a minimal sequence, it follows that for any non-zero
polynomial p P Crzs, we must have ppT qe ‰ 0. This also shows that the sequence
tTneun is linearly independent.

Define a subspace Y as in Lemma 2.1. We want to show that
 

hpλ, eq : λ P A
(

is
linearly independent. This will show that Y is infinite dimensional by choosing
A to be a infinite subset of ρpT q.

Suppose there exist non-zero scalars a1, ¨ ¨ ¨ , am and distinct λ1, ¨ ¨ ¨ , λm in A
such that

a1hpλ1, eq ` ¨ ¨ ¨ ` anhpλn, eq “ 0. (7)

By applying the operator pλ1 ´ T q ¨ ¨ ¨ pλm ´ T q to both sides of Equation (7),
we get ppT qe “ 0 for some non-zero polynomial p, contradicting our earlier
observation.

Set xn “ Tne. Since txnun is minimal, the biorthogonal functionals tx˚nun
are bounded (and non-zero). Let rn “ ‖x˚n‖. By Lemma 2.4, there exists a
sequence tcnun of positive real numbers such that bk “

ř8

n“0 cnrn`k ă 8 for
each k. Without loss of generality, we may assume that n

?
cn Ñ 0 as shrinking

the values of the cn’s will not affect convergence of the series.

Consider the function F : CÑ C defined by F pzq “
ř8

n“0 cnz
n. By the Cauchy-

Hadamard Theorem, F is entire. Set Hpzq “ F p 1z q. H has an essential singu-
larity at z “ 0.
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By the Great Picard Theorem (Theorem 2.5), we have that in a punctured
neighbourhood of 0, Hpzq achieves all complex values, except at most one,
infinitely often, hence so does F pzq. By picking an appropriate d ă 0, and
replacing c0 with c0 ´ d, we may assume without loss of generality that the set
ZpF q “

 

z P C : F pzq “ 0
(

is infinite.

Since ZpF q is infinite, we can pick a sequence
 

λ´1
n

(

n
of distinct elements in

ZpF q. Moreover, since F is non-constant, ZpF q has no accumulation points,
and hence |λn| Ñ 0. By condition aq, we may assume that each λn lies in the
unbounded component of ρpT q so hpλ, eq is defined for each n.

Set Y “ rhpλn, eqsně0. Earlier observations show that Y is T -almost invariant
and infinite dimensional. We show that Y K is also infinite dimensional by con-
structing a sequence of linearly independent functionals tfnun such that each
fn is in Y K.

For each k, set Fkpzq “ zkF pzq. In terms of Taylor series expansions, we see
that

Fkpzq “ zkF pzq “ zk
8
ÿ

n“0

cnz
n “

8
ÿ

n“0

cnz
n`k “

8
ÿ

n“0

cpkqn zn. (8)

where we define the constants c
pkq
n by

cpkqn “

#

0 if n ă k.

cn´k if n ě k.
(9)

For each k, we define a function on spantxnu by fkpxnq “ c
pkq
n . This functional

is well-defined since the sequence txnun is minimal. We wish to show that each
fk is bounded. Let x P spantxnu. We may write x “

řm
n“0 x

˚
npxqxn for some

m ě 0. This gives

|fkpxq| “
∣∣∣∣fkˆ 8

ÿ

n“0

x˚npxqxn

˙
∣∣∣∣

ď

ˆ m
ÿ

n“0

‖x˚n‖cpkqn
˙

‖x‖

“

ˆ m
ÿ

n“k

rncn´k

˙

‖x‖

ď

ˆ 8
ÿ

n“k

rncn´k

˙

‖x‖

“ bk‖x‖.

(10)

Thus each fk is bounded. By the Hahn-Banach Theorem, we may extend its
domain to all of X. Now we show that fk annihilates Y .
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Fix k. If |λ| ą sprpT q, we have

fkphpλ, eqq “ fk

ˆ 8
ÿ

n“0

λ´n´1xn

˙

“ λ´1
8
ÿ

n“0

λ´ncpkqn

“ λ´1Fkpλ
´1q

“ λ´k´1F pλ´1q.

(11)

Analyticity of the maps λ ÞÑ fkphpλ, eqq and λ ÞÑ λ´k´1F pλ´1 on ρpT qK t0u
and the Uniqueness Property show that the maps agree on that domain. Since
each λ´1

n P ZpF q, fk annihilates Y .

Since fkpxnq “ c
pkq
n ‰ 0 for n ě k, each fk is non-zero. Suppose that they were

dependent, then we may write

fl “
l´1
ÿ

n“m

anfn.

with am ‰ 0. Evaluating both sides of the equation at xm gives

flpxmq “ cplqm “ 0 ‰ amc0 “
l´1
ÿ

n“m

anc
pnq
m “

l´1
ÿ

n“m

anfnpxmq. (12)

This is a contradiction. Hence the fk are linearly independent and Y is a T -
almost invariant half-space.

Corollary 2.7. If T is a weighted forward shift with weights converging to 0,
then T has an almost invariant half-space.

Proof. T is quasinilpotent, so it satisfies condition aq of Theorem 2.6. Also, the
orbit of e0 forms a minimal sequence.

Remark 2.8. Condition aq in Theorem 2.6 may be replaced with a weaker
condition, requiring only an open segment of a punctured disk to be contained
in ρpT q.

In light of Theorem 2.6, by considering the Hilbert spaces instead of general
Banach spaces, one might wish to define an almost reducing half-space of an
operator T in an analogous manner. A natural question to ask is the following:
Does every operator acting on a Hilbert space have an almost reducing half-
space?
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Remark 2.9. To check if almost reducing half-spaces are worth exploring,
one would like to be able to exhibit the existence of one. In particular, one
would like to know if the construction in the proof of Theroem 2.6 produces an
almost reducing half-space. As an example, we could consider a Donoghue shift
D P Bp`2pNqq with weight sequence twnun. Recall that D is defined by

De0 “ 0, Dei “ wiei´1, i P N.

Let T P Bp`2pNqq be the diagonal operator defined by

Tei “ wi`1ei, i P NY t0u .

For a vector e P `2pNq, and λ ‰ 0, one may calculate

Dpλ´D˚q´1e “
1

λ
De`

1

λ
T 2pλ´D˚q´1e. (13)

Hence we see that the subspace Ye “ spantpλ´D˚q´1e : λ P Au for some subset
A P ρpDq is D-almost invariant if and only if it is T 2-almost invariant.

At the time of writing, I am unsure if Ye is D-almost reducing for any vector e
with

 

pD˚qne
(

n
being a minimal sequence.

The existence of almost invariant half-spaces can be extended to another class
of operators. The proof of which follows similarly to that of Theorem 2.6 but
uses a Blaschke product instead of an entire function.

Theorem 2.10. Let X be a Banach space and T P BpXq. Suppose that T
satisfies

a) sprpT q ď 1;

b) There exists a vector e P X whose orbit tTneun “ txnun is a minimal
sequence and

8
ÿ

n“1

‖x˚n‖
n

ă 8. (14)

Then T has an almost invariant half-space.

Proof. Let D be the open unit disk in C. Given a sequence tλnun in D such
that

ř8

n“1p1´ |λn|q ă 8, the corresponding Blaschke product is defined by

Bpzq “
8
ź

n“1

|λn|
λn

λn ´ z

1´ λnz
. (15)

B is a bounded analytic function on D with zeros exactly at the λn.

A result in [10] shows the existence of a sequence tλnun in D such that the
Taylor coefficients an of its infinite Blaschke product B are of the order O

`

1
n`1

˘

and so Bpnqp0q “ O
`

n!
n`1

˘

.

9



For k ě 1, define the functions Fkpzq “ zkBpzq. These functions Fk are linearly
independent as linear dependence would imply ppzqBpzq “ 0 on D for some
polynomial ppzq P Crzs. However, the zeros of ppzqBpzq are countable, giving a
contradiction.

We have that

Fkpzq “ zkBpzq “ zk
8
ÿ

n“0

Bpnqp0q

n!
zn “

8
ÿ

n“m

Bpn´mqp0q

pn´mq!
zn (16)

and so

F
pnq
k p0q “

#

0 if n ă m.
n!

pn´mq!B
pn´mqp0q ď C n!

n´m`1 if n ě m.
(17)

Since each λn P D and sprpT q ď 1, it follows that λ´1
n P ρpT q for each n and so

hpλ´1
n , eq is well-defined. Set Y “ rhpλ´1

n , eqsně0. As seen before, Y is infinite
dimensional and T -almost invariant.

Define linear functionals fk on spantxnu by fkpxnq “
F
pnq
k p0q

n! . Since the xn are
linearly independent, fk is well-defined for each k. To show that each fk is
bounded, take x P spantxnu. We may write x “

ř

n αnxn and

|fkpxq| “
∣∣∣∣ÿ
n

αn
F
pnq
k p0q

n!

∣∣∣∣
ď C

ÿ

něk

|αn|
n´ k ` 1

“ C
ÿ

něk

|x˚npxq|
n´ k ` 1

ď C‖x‖
ÿ

něk

‖x˚n‖
n´ k ` 1

.

(18)

If k “ 0 or 1, the series in the Equation (18) converges by our assumptions.
Otherwise, note that when n ě k and k ě 1,

kpn´ k ` 1q “ pk ´ 1qpn´ kq ` n ě n. (19)

Combining Equations (18) and (19), we have

ÿ

něk

‖x˚n‖
n´ k ` 1

“ k
ÿ

něk

‖x˚n‖
kpn´ k ` 1q

ď k
ÿ

něk

‖x˚n‖
n

ă 8. (20)

Hence each fk is bounded. By the Hahn-Banach Theorem, we may extend the
domain of fk to all of X.

If |λ| ă 1, we have

fkphpλ
´1, eqq “ fk

`

λ
8
ÿ

n“0

λnxn
˘

“ λ
8
ÿ

n“0

λn
F
pnq
k p0q

n!
“ λFkpλq. (21)
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By analyticity, these functions agree on DK t0u. Since each λn is a zero of B
and hence Fk, it follows that the fk annihilate Y .

Suppose that the fk are linearly independent. Then for some m ą 0 and
α0, ¨ ¨ ¨ , αm with αm ‰ 0, we have

α0f0 ` ¨ ¨ ¨ ` αmfm “ 0.

Consider the Taylor series expansions of the Fk and note

α0F0 ` ¨ ¨ ¨ ` αmFm “ α0

8
ÿ

n“0

F
pnq
0 p0q

n!
zn ` ¨ ¨ ¨ ` αm

8
ÿ

n“0

F
pnq
m p0q

n!
zn

“

8
ÿ

n“0

α0F
pnq
0 p0q ` ¨ ¨ ¨ ` αmF

pnq
m p0q

n!
zn

“

8
ÿ

n“0

α0f0 ` ¨ ¨ ¨ ` αmfm
n!

zn

“ 0.

(22)

This contradicts the earlier observation that the functions Fk were linearly in-
dependent.

The conditions set on the operator T in Theorem 2.10 seem rather restrictive.
As such, one would want examples of an operator satisfying Theorem 2.10 and
not Theorem 2.6. Below is an example of such an operator.

Example 2.11. Let W be a weighted forward shift with non-increasing non-
zero weights twnun. W acts on the basis te0, e1, ¨ ¨ ¨ u by Wen “ wn`1en`1.
Then ‖Wn‖ “

śn
k“1|wn|. By the Spectral Radius Forumla,

sprpW q “ lim
nÑ8
‖Wn‖ 1

n “ lim
nÑ8

ˆ n
ź

k“1

|wk|
˙

1
n

. (23)

Since W is a forward shift, we see that the orbit of e0 is a minimal sequence.
Let xn “Wne0, then

‖x˚n‖ “
n
ź

k“1

1

|wk|
. (24)

For W to satisfy the conditions of Theorem 2.10, we require that

sprpW q “ lim
nÑ8

ˆ n
ź

k“1

|wk|
˙

1
n

ď 1 (25)

and

lim
nÑ8

n
ÿ

k“1

‖x˚k‖
k

“ lim
nÑ8

n
ÿ

k“1

1

k

ˆ k
ź

j“1

1

|wj |

˙

ă 8 (26)
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We note that finding a monotone decreasing sequence tpnun of non-negative
real numbers satisfying

lim
nÑ8

ˆ n
ź

k“1

p1` pkq

˙
1
n

ď 1 (27)

and

lim
nÑ8

n
ÿ

k“1

1

k

ˆ k
ź

j“1

1

1` pj

˙

ă 8 (28)

will suffice in providing an example. Indeed, one can see this by picking the
weight sequence for W to be twnun “ t1` pnun.

Consider the sequence p1 “ 2, pk “
1
k´1 for k ě 2. For k P N,

k
ź

j“1

1

1` pj
“

1

3

k
ź

j“2

j ´ 1

j
“

1

3k
. (29)

Substituting Equation (29) yields

n
ÿ

k“1

1

k

ˆ k
ź

j“1

1

1` pj

˙

“

n
ÿ

k“1

1

3k2
Ñ

π2

18
. (30)

This satisfies the second condition (Equation (28)).

To check the first condition, we note the following inequalities: for each n P N,

1 ď
n
ź

k“1

p1` pkq

ď exp

ˆ n
ÿ

k“1

pk

˙

ď exp

ˆ

3`
n´1
ÿ

k“1

1

k

˙

ď expp3` logpn´ 1qq

“ e3pn´ 1q.

(31)

From Equation (31), we get

1
1
n ď

ˆ n
ź

k“1

p1` pkq

˙
1
n

ď pe3pn´ 1qq
1
n . (32)

The limits of the left and right sides of Equation (32) as n tends to infinity are
both 1. This shows the first condition (Equation (27)).
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The operator W constructed above does not satisfy the conditions of Theorem
2.6 as the unbounded component of its resolvent does not contain a punctured
disk centered at 0. Indeed, its spectral radius is 1, so its spectrum contains some
non-zero point. Further, since W is a weighted shift with positive real weights,
its spectrum has rotational symmetry about 0, and hence contains some circle
with positive radius centered at 0.

A Scalar-Plus-Finite-Rank Characterization

We first note the following characterization of scalar operators acting on a Banch
space:

Proposition 3.1 (Scalar Characterization). Let X be a Banach space and T P
BpXq. Every subspace is invariant under T if and only if T “ α for some α P C.

We now work to prove an analog in the almost invariant setting. In particular,
we wish to prove the following:

Proposition 3.2 (Scalar-Plus-Finite-Rank Characterization). Let X be a Ba-
nach space and T P BpXq. Every subspace is almost invariant under T if and
only if T “ α` F for some α P C and some finite rank operator F .

Before proving the proposition in the general Banach space setting, we first look
at the case where instead we have a separable Hilbert space H. We give a proof
that heavily uses the fact that we are working in a Hilbert space. An alternate
proof of the following proposition is given by Marcoux, Popov, and Radjavi in
[3].

Proposition 3.3 (Scalar-Plus-Finite-Rank Characterization (Hilbert Spaces)).
Let H be a separable Hilbert space and T P BpHq. Every subspace is almost
invariant under T if and only if T “ α`F for some α P C and some finite rank
operator F .

Proof. Suppose that every subspace is T -almost invariant. Given any subspace
Y Ď H, under the decomposition H “ Y ‘ Y K, we get that

T “

„

T1 F2

F1 T2



where F1 and F2 are finite rank.

If π is the canonical map from BpHq to the Calkin algebra BpHq{KpHq, then we
see that

πpT q “

„

πpT1q 0
0 πpT2q



.
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It follows that T is essentially reductive, since this holds for any decomposition
H “ Y ‘Y K. A result of Moore [11] shows that T is essentially normal. Further,
combining this with results of Harrison [12] tells us that T has Lavrientiev
essential spectrum and thus that T “ N `K for some normal operator N and
some compact operator K.

Let M Ď H be a half-space and P be the projection with range M . Under the
decomposition H “M ‘MK, P looks like

P “

„

I 0
0 0



.

Since M is a half-space, we get that p “ πpP q P BpHq{KpHq and that 0 ‰ p ‰ 1.
Furthermore, P is a projection, so P “ P˚ “ P 2, and p “ p˚ “ p2. We will
show that every projection in the Calkin algebra is the image of a projection in
BpHq.

Suppose q P BpHq{KpHq is a projection. If 0 ‰ q ‰ 1, then by the Spectral
Mapping Theorem, we must have that σpqq “ t0, 1u. Let Q0 P BpHq be such

that πpQ0q “ q. Such a Q0 exists since π is surjective. Set Q1 “
Q0`Q

˚
0

2 . Q1 is
self-adjoint and πpQ1q “ q.

Since Q1 is self-adjoint, it is normal and we may apply the Spectral Theorem
for Normal Operators. We have that σepQ1q “ σpqq “ t0, 1u, and since Q1 is
normal, we get σpQ1qKσepQ1q is the set of isolated eigenvalues of Q1 of finite
multiplicity. These eigenvalues converge to either 0 or 1. By approximating us-
ing the finite rank operators corresponding to the eigenspaces, we can construct
a compact operator K1 such that Q “ Q1 ` K has spectrum σpQq “ t0, 1u
and is self-adjoint. From this, it follows that Q “ Q˚ “ Q2 by the contin-
uous functional calculus since the function fpzq “ z satisfies f “ f “ f2 on
σpQq “ t0, 1u.

This shows the existence of a projection Q P BpHq such that πpQq “ q since
compact perturbations do not change images in the Calkin algebra. Hence every
projection in BpHq{KpHq is the image of a projection in BpHq.

Since every half-space is almost invariant under T , for any projection Q onto a
half-space M , we get that both pI ´ QqTQ and QT pI ´ Qq are finite rank. If
q “ πpQq and t “ πpT q, then p1 ´ qqtq “ 0 “ qtp1 ´ qq and so qt “ tq. Thus t
commutes with every projection in BpHq{KpHq.

Given an arbitrary S P BpHq, we may split S into its real and imaginary parts.
Using the Spectral Theorem for Normal Operators and applying it to the real
and imaginary parts of S, one can see that the span of the projections are
dense in BpHq{KpHq. By the continuity of multiplication, it follows that t
commutes with every element in BpHq{KpHq, so t “ πpT q P ZpBpHq{KpHqq.
Since the center of the Calkin algebra consists of just the scalars, it follows that
πpT q “ α ` KpHq and T “ α `K for some α P C and some compact operator
K. We wish to show that this compact operator K is indeed finite rank.

14



Adding a scalar multiple of the identity does not change the invariant and almost
invariant subspaces of an operator, so replacing T with T ´α, we see that every
half-space is almost invariant under K.

K˚K is a compact, self-adjoint (hence normal) operator. Thus we can apply
the Spectral Theorem for Compact Normal Operators. The eigenvalues of K˚K
form a countable (but possibly finite) sequence tλnun converging to 0 and the
corresponding eigenspaces are finite dimensional.

Since every subspace is almost invariant under K, the same is true for K˚

and K˚K. Suppose that the sequence tλnun were countably infinite. For each
eigenvalue λn, we map pick a corresponding eigenvector un. Since eigenspaces
for distinct eigenvalues are mutually orthogonal, the un are linearly independent.

Consider the vectors tu4n ` u4n`1u and their closed span Y “ ru4n`u4n`1sně0.
It is clear that this subspace is infinite dimensional and infinite codimensional,
so Y is a half-space. Furthermore, by construction, Y is not almost invariant
for K˚K, a contradiction. So the sequence tλnun must be finite.

It follows from each eigenspace being finite dimensional that K˚K is a finite
rank operator. This gives that K˚|ranK is finite rank. As ranK “ pkerK˚qK,
we have that the map

K˚|ranK “ K˚|pkerK˚qK : pkerK˚qK “ ranK Ñ ranK˚

is bijective. Hence ranK is finite dimensional and K is finite rank.

The converse is readily apparent.

A proof of the general case (Proposition 3.2) was given by Assadi, Farzaneh,
and Mohammadinejad in [8]. We follow the method that they used to show this
characterization.

Lemma 3.4. Let X be a Banach space and T P BpXq. If there exists a finite
dimensional subspace M Ď X such that M and M ` spantxu are T -invariant
for every x P X, then T “ α` F for some α P C and some finite rank operator
F .

Proof. Consider the operator rT : X{M Ñ X{M defined by rT px`Mq “ Tx`M .

Since M is T -invariant, it follows that rT is well-defined. Furthermore, since
M ` spantxu is also T -invariant for each x P X, we see that each 1-dimensional

subspace of X{M is rT -invariant. It follows that every subspace of X{M is also
rT -invariant and hence rT is scalar. Say rT “ α.

Define F P BpXq by Fx “ Tx´ αx. Then FX ĎM , so F is finite rank.

Lemma 3.5. Let X be a Banach space and T P BpXq. Suppose that every
subspace is T -almost invariant. Then for each x P X, the subspace rTnxsně0 is
finite dimensional.
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Proof. Suppose not, and say that for some x1 P X, the subspace rTnx1s is
infinite dimensional. It follows that for each k ě 1, T kx1  P rT

nx1snăk. We wish
to construct a subspace of X that is not T -almost invariant.

Pick x˚1 P X
˚ such that x˚1 px1q ‰ 0 and define P1 by P1x “ x´

x˚1 pxq

x˚1 px1q
x1. P1 is a

projection with kerP1 “ spantx1u and imP1 “ kerx˚1 . Define x2 “ P1Tx1. We
have spantx1, Tx1u “ spantx1, x2u and x2  P spantx1u since Tx1  P spantx1u.

We continue inductively to get sequences txnun of vectors, tx˚nu of functionals,
and tPnun of projections which satisfy:

i) x˚i pxjq “ 0 if and only if i ‰ j;

ii) Pnpxq “ x ´
řn
k“1

x˚k pxq

x˚k pxkq
xk is the projection with imPn “

Şn
k“1 kerx˚k

and kerPn “ spantx1, ¨ ¨ ¨ , xnu;

iii) xn`1 “ PnTxn;

iv) spantx1, ¨ ¨ ¨ , T
n´1x1u “ spantx1, ¨ ¨ ¨ , xnu;

v) xn  P spantx1, ¨ ¨ ¨ , xn´1u.

To show that we can indeed continue the construction, suppose we have xk, x
˚
k´1,

and Pk´1 for k ď n satisfying i) to v). Since xn  P spantx1, ¨ ¨ ¨ , xn´1u, by
the Hahn-Banach Theorem we can find x˚n P X

˚ such that x˚npxnq ‰ 0 and
x˚npxkq “ 0 for k ă n. With this x˚n, we may use ii) to define Pn.

Define xn`1 “ PnTxn to satisfy iii). Since imPn “
Şn
k“1 kerx˚k , we see that i)

holds. By definition of Pn and xn`1, there exists some yn P spantx1, ¨ ¨ ¨ , xnu
such that xn`1 “ Txn ` yn and iv) shows that xn, yn P spantx1, ¨ ¨ ¨ , T

n´1x1u,
hence xn`1 P spantx1, ¨ ¨ ¨ , T

nx1u. Also Tn´1x1 P spantx1, ¨ ¨ ¨ , xnu and Txk P
spantx1, ¨ ¨ ¨ , xk`1u for each k ď n. Putting this together gives

Tnx1 P spantTx1, ¨ ¨ ¨ , Txnu Ď spantx1, ¨ ¨ ¨ , xn`1u. (33)

Using the above and iv), we have spantx1, ¨ ¨ ¨ , T
nx1u “ spantx1, ¨ ¨ ¨ , xn`1u.

This shows that iv) holds.

The conditions show that Tnx1  P spantx1, ¨ ¨ ¨ , T
n´1x1u “ spantx1, ¨ ¨ ¨ , xnu

but Tnx1 P spantx1, ¨ ¨ ¨ , xn`1u. Hence it follows that xn`1  P spantx1, ¨ ¨ ¨ , xnu,
so v) holds as well.

Set Y “ rx2n´1sně0. By assumption, Y is T -almost invariant, so there ex-
ists some finite dimensional subspsace F such that TY Ď Y ` F . As such,
Tx2n´1 “ yn ` fn for some yn P Y and some fn P F . From earlier definitions,
P2n´1Tx2n´1 “ x2n, so Tx2n´1 “ x2n ` un for some un P spantx1, ¨ ¨ ¨ , x2n´1u.

Pick j ą n. By i), x˚2jpx2nq “ x˚2jpunq “ x˚2jpynq “ 0 since Y is spanned
by the odd indices 2k ´ 1 and un P spantx1, ¨ ¨ ¨ , x2n´1u. Since yn ` fn “
Tx2n´1 “ x2n ` un, we have x˚2jpfnq “ 0 as well. However, x˚2npx2nq ‰ 0 but
x˚2npunq “ x˚2npynq “ 0. Similar reasoning shows that x˚2npfnq ‰ 0.

16



The x˚k are linearly independent and we have x˚2npfnq ‰ 0 while x˚2jpfnq “ 0 for
each n and j ą n. We conclude that F is infinite dimensional, contradicting
our original assumptions.

With Lemmas 3.4 and 3.5, we are now able to prove Proposition 3.2.

Proof of Proposition 3.2. Suppose otherwise, then by Lemma 3.4, given any T -
invariant finite dimensional subspace M Ď X, there exists some vector x P X
such that M ` spantxu is not T -invariant.

Start with the subspace t0u. There exists some vector x1 P X such that Tx1  P
spantx1u. Set M1 “ spantx1u and choose x˚1 P X

˚ such that x˚1 |M1 “ 0 and
x˚1 pTx1q ‰ 0. Set M 1

1 “ rT
nx1sně0.

Lemma 3.5 says that M 1
1 is finite dimensional. Since M 1

1 is also T -invariant,
there again exists some x2 P X such that M 1

1 ` spantx2u is not T -invariant.
Since X “ kerx˚1 ‘ spantTx1u and Tx1 P M 1

1, we can choose x2 such that
x2 P kerx˚1 .

We continue this inductively and construct sequences txnun of vectors, tx˚nu of
functionals, and tMnu and

 

M 1
n

(

of finite dimensional subspaces of X such that

i) x˚i pxjq “ 0 for all i, j;

ii) x˚i pTxjq ‰ 0 if i “ j and x˚i pTxjq “ 0 if i ą j;

iii) Mn “M 1
n´1 ` spantxnu;

iv) M 1
n “Mn ` rT

kxnskě0 and M 1
n is T -invariant.

To show that we can indeed continue this construction, suppose that we have
defined xk, x

˚
k ,Mk, and M 1

k for k ď n which satisfy i) to iv). Since M 1
n is

finite dimensional and T -invariant, there exists some xn`1 P X such that M 1
n`

spantxn`1u is not T -invariant.

ii) gives that

X “

n
č

k“1

kerx˚k ‘ spantTx1, ¨ ¨ ¨ , Txnu. (34)

iii) and iv) show that spantTx1, ¨ ¨ ¨ , Txnu Ď M 1
n. Thus we can pick xn`1

to be i
Şn
k“1 kerx˚k . Since M 1

n is T -invariant, we must have that Txn`1  P

M 1
n ` spantxn`1u.

Let Mn`1 “ M 1
n ` spantxn`1u to satisfy iii). Pick x˚n`1 P X˚ such that

x˚n`1|Mn`1
“ 0 and x˚n`1pTxn`1q ‰ 0. We will have that x˚n`1pxkq “ 0 for

each k ď n ` 1 and x˚n`1pTxkq “ 0 for each k ď n. This construction satisfies
i) and ii) as well.

We define M 1
n`1 “Mn`1` rT

kxn`1skě0. Lemma 3.5 shows that M 1
n`1 is finite

dimensional and it is clear that it is T -invariant. Condition iv) is now satisfied.
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Define Y “ rxnsně1. Y is T -almost invariant by assumption, so there exists
some finite dimensional subspace F such that TY Ď Y ` F . For each xn P Y ,
there exists some yn P Y and some fn P F such that Txn “ yn ` fn.

By the conditions above, we have x˚npTxnq ‰ 0 and x˚npynq “ 0. It follows that
x˚npfnq ‰ 0. For k ą n, x˚kpTxnq “ x˚kpynq “ 0, and so x˚kpfnq “ 0 as well. Since
the x˚k are linearly independent, we must have that F is infinite dimensional -
a contradiction.

Remark 3.6. Lemma 3.5 states that if every subspace is T -almost invariant for
T P BpXq, then T is locally algebraic. An adaptation of Kaplansky’s Lemma
shows that if this is the case, then T is in fact algebraic. Using this idea, if
an alternative proof to Lemma 3.5 were to be found, one could possibly prove
Proposition 3.2 by circumventing the constructions from the above proofs.

The Reflexive Banach Space Case

The original results of Androulakis et al. have since been extended to show that
every operator acting on a Banach space has an almost invariant half-space.
This section works towards a proof of this result by looking at papers of Popov
[2], of Tcaciuc [6], and of Popov and Tcaciuc [4].

The desired result was achieved in steps and the existence of almost invariant
half-spaces was first proven for operators acting on a reflexive Banach space. The
key idea in this proof uses basic sequences and the Kadets-Pe lczyński Criterion,
stated below without proof.

Theorem 4.1 (Kadets-Pe lczyński Criterion). Let S be a bounded subset of a
Banach space X such that 0 is not in the norm-closure of S. Then the following
are equivalent:

a) S fails to contain a basic sequence;

b) The WOT-closure of S is WOT-compact and does not contain 0.

Theorem 4.2. Let X be a Banach space and T P BpXq. Suppose that there
exists µ P BσpT q that is not an eigenvalue. Then T has an almost invariant
half-space with defect at most 1.

Proof. Without loss of generality, we may assume that µ “ 0 by replacing T
with T ´ µ since this does not change the almost invariant subspaces of the
operator or their defects. As in the proof of Theorems 2.6 and 2.10, we still
construct vectors of the form hpλn, eq but this time, we wish to extract a basic
sequence from it, resulting in the desired almost invariant half-space.

Since 0 P BσpT q, we may pick a sequence tλnun in ρpT q converging to 0. We
get a corresponding sequence tλn ´ T un of invertible operators converging to
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a non-invertible one. This implies that the sequence of norms
 

‖pλn ´ T q´1‖
(

is unbounded. The Uniform Boundedness Principle gives the existence of some
vector e P X such that

‖hpλn, eq‖ “ ‖pλn ´ T q´1e‖Ñ8. (35)

By scaling, we may assume that e P ballX.

For simplicity, denote hpλn, eq by hn, hn

‖hn‖ by xn and let S “ txnun Ď ballX.

As before, we have the following

Txn “
1

‖hn‖
Thn “ λn

hn
‖hn‖

´
1

‖hn‖
e “ λnxn ´

1

‖hn‖
e. (36)

Equation (36) shows that rxnsně0 is almost invariant with defect at most 1.

We now appealto the Kadets-Pe lczyński Criterion (Theorem 4.1) by considering

S
WOT

.

• Case 1: S
WOT

is not WOT-compact.

In this case it follows from the Kadets-Pe lczyński Criterion that S contains
a basic sequence. By passing to a subsequence, we may assume that
S “ txnun is basic. By taking the subspace Y “ rx2nsně0, we get an
almost invariant subspace.

• Case 2: S
WOT

is WOT-compact.

In this case, we still wish to extract a basic sequence from S. We do this by

showing that S
WOT

contains 0. By the Eberlein-Šmulian Theorem, WOT-
compactness is equivalent to WOT-sequential compactness. By passing to

a subsequence, we may assume that xn Ñ
WOT z for some z P S

WOT
, and

so Txn Ñ
WOT Tz. Since λn Ñ 0 and ‖hn‖Ñ8,

Txn “ λnxn ´
1

‖hn‖
eÑ 0. (37)

Hence Tz “ 0. Since 0 is not an eigenvalue of T , z “ 0 and so xn Ñ
WOT

0. The Kadets-Pe lczyński Criterion again shows the existence of a basic
sequence in S and we may continue as in Case 1.

A corollary of Theorem 4.2 is the following:

Corollary 4.3. Let X be a reflexive Banach space and T P BpXq. Suppose
that either BσpT qKσppT q or BσpT˚qKσppT˚q is non-empty, then T has an almost
invariant half-space.
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Proof. Since X is reflexive, T˚˚ “ T . The hypotheses show that either T or
T˚ has an almost invariant half-space by Theorem 4.2. The result follows from
Proposition 1.7.

What remains is to remove the eigenvalue condition from the hypothesis.

Theorem 4.4. Let X be a reflexive Banach space and T P BpXq. Then T has
an almost invariant half-space of defect at most 1.

Proof. In light of Corollary 4.3 we may assume that any point in BσpT q “
BσpT˚q is an eigenvalue for both T and T˚.

• Case 1: BσpT q has infinite cardinality.

In this case, pick disjoint, countably infinite sequences tλnun and tµnun
of BσpT q. By assumption, each of the λn and µn are eigenvalues for T and
T˚, hence we can choose eigenvectors txnun in X and tfnu in X˚ such
that Txn “ λnxn and T˚fn “ µnfn.

The sets txnun and tfnun are linearly independent, so Y “ rxnsně0 is
infinite dimensional. Since Y is the closed linear span of eigenvectors of
T , Y is T -invariant. We show that Y is infinite codimensional in X.

For n, k ě 0, we have

λkfnpxkq “ fnpλkxkq “ fnpTxkq “ T˚fnpxkq “ µnfnpxkq. (38)

Since we chose the sequences tλnun and tµnun to be disjoint, we must
have fnpxkq “ 0 for all n, k ě 0. So the linearly independent functionals
tfnun annihilate Y , showing infinite codimensionality.

• Case 2: BσpT q is finite.

Finiteness of BσpT q implies finiteness of σpT q and so BσpT q “ σpT q. In
this case, criterion b) from Theorem 2.6 holds.

For any T -invariant subspace Y of X, we have that BσpT |Y q Ď σapT |Y q Ď
σapT q Ď σpT q. Reasoning from the above paragraph shows that σpT |Y q
is also finite and σpT |Y q Ď σpT q.

For n P N, set Yn “ TnX, and set Y0 “ X. Each Yn is invariant under
T , Yn`1 “ TYn, and X Ě Y1 Ě Y2 Ě ¨ ¨ ¨ . It is clear that for j, n ě 0 and
y P Yj that Tny P Yn`j .

We may assume that each Yn is infinite dimensional, otherwise let h be
the smallest index for which Yn is finite dimensional. Any half-space of
Yh´1 containing Yh would then be a T -almost invariant half-space.

For any n ě 0, we have σpT |Yn`1q Ď σpT |Ynq. Finiteness of σpT q and
non-emptyness of the spectrum show that there exists k ě 0 such that
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σpT |Ynq “ σpT |Yk
q ‰ H for each n ě k. Since an almost invariant half-

space under T |Yk
is an almost invariant half-space under T , we may assume

without loss of generality that k “ 0. By perturbing by a scalar, we may
also assume that 0 P σpT q.

We will show that either there exists a vector z P X with its orbit under
T being a minimal sequence or that the restriction of T to some Yj has
dense range.

We may assume that Y1 is finite codimensional in X, otherwise it would
be an invariant half-space for T . It follows that X “ Y1‘Z for some finite
dimensional subspace Z. If Z “ t0u, then T has dense range. Otherwise,
let tz1, ¨ ¨ ¨ , zku be a basis for Z and assume that the orbits of none of the
zj under T are minimal sequences.

For 1 ď j ď k, let pj be the smallest index such that T pjzj P rT
nzjsn‰pj .

By an equivalent criterion for minimal sequences, T pjzj P rT
nzjsnąpj , so

T pjzj P Ypj`1. By setting p0 “ max tp1, ¨ ¨ ¨ , pku, it follows that T p0zj “
T p0´pj pT pjzjq P Tp0`1 for each j. Since tz1, ¨ ¨ ¨ , zku is a basis for Z,
T p0Z Ď Yp0`1.

For any y P Y1, we see that T p0y P Yp0`1. Since X “ Y1 ‘ Z, T p0X Ď

Tp0`1. Taking closures gives Yp0 Ď Yp0`1, so Yp0 “ Yp0`1 and T |Yp0
has

dense range.

We get two more subcases:

– Case 2.1: There is a vector z with orbit under T being a minimal
sequence.

Here, we meet the hypotheses of Theorem 2.6 and so T has an almost
invariant half-space.

– Case 2.2: There exists some Yj such that T |Yj has dense range.

If S “ T |Yj
: Yj Ñ Yj has dense range, then S˚ is injective. Hence

0 P σpSq “ σpS˚q “ BσpS˚q and 0 is not an eigenvalue for S˚.
Theorem 4.2 shows that S˚ has an almost invariant half-space with
defect at most 1. By reflexivity, so does S and T .

Remark 4.5. We note that some changes to the arguments presented in the
proof of Theorem 4.4 are necessary if we consider a Hilbert space H instead.
This is due to the differences in the definition of Banach space and Hilbert space
adjoints.

The assumption made at the start of the proof changes to assuming that any
point in BσpT q is an eigenvalue for T and any point in BσpT˚q “ BσpT q is an
eigenvalue for T˚. Also, instead of finding disjoint sequences in ρpT q for Case 1,
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we find disjoint sequences tλnun in ρpT q and tµnun in ρpT˚q “ ρpT q. This is
still possible, so Theorem 4.4 holds for Hilbert spaces as well.

The General Banach Space Case

We now want to remove the restriction of X being a reflexive Banach space.
We initially required reflexivity so that information about T˚ gave information
about T . The missing link to this is given by a weak˚-analog of the Bessaga-
Pe lczyński Selection Principle.

Theorem 5.1 (Bessaga-Pe lczyński Selection Principle). Let tx˚nun be a semi-
normalized (0 ă infně0‖x˚n‖ ď supně0‖x˚n‖ ă 8) weak˚-null sequence in a dual
Banach space X˚. Then there exists a basic subsequence ty˚nun of tx˚nun and a
bounded sequence tynun in X such that y˚i pyjq “ δij for all i, j.

We also require another result prior to proving the general case.

Proposition 5.2. Let X be a separable Banach space, then the unit ball of X˚

is weak˚-metrizable.

Theorem 5.3. Let X be a separable Banach space and T P BpXq. Suppose that
BσpT˚qKσppT˚q is non-empty. Then T has an almost invariant half-space with
defect at most 1.

Proof. Let µ P BσpT˚qKσppT˚q. By shifting by a scalar, we may assume without
loss of generality that µ “ 0. Let tλnun be a sequence in ρpT˚q converging to
0. Then ‖pλn ´ T˚q´1‖Ñ 8, so by the Uniform Boundedness Principle, there
exists a vector e˚ P X˚ such that ‖pλn´T˚q´1e˚‖Ñ8. Set h˚n “ pλn´T

˚q´1e˚

and x˚n “
h˚n

‖h˚n‖ .

The sequence tx˚nun is normalized, hence semi-normalized, and

T˚x˚n “ λnx
˚
n ´

1

‖h˚n‖
e˚. (39)

By the Banach-Alaoglu Theorem, ballX˚ is weak˚-compact. Separability of
X and Proposition 5.2 show that ballX˚ is also weak˚-metrizable. This gives
weak˚-sequential compactness of ballX˚. Since tx˚nun consists of unit norm
functionals, it is contained in ballX˚, and by passing to a subsequence, we may
assume that x˚n Ñ

weak˚ y˚ for some y˚ P X˚.

We have λn Ñ 0, x˚n Ñ
weak˚ y˚ and ‖h˚n‖Ñ8. Hence T˚x˚n Ñ

weak˚ T˚y˚ and
Equation (39) show that T˚x˚n “ λnx

˚
n´

1
‖h˚n‖e

˚ Ñ 0. This gives T˚y˚ “ 0, and

since 0 is not an eigenvalue for T˚, y˚ must be 0. Thus tx˚nun is weak˚-null.
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Since tx˚nun is weak˚-null, we may apply the Bessaga-Pe lczyński Selection Prin-
ciple (Theorem 5.1). Passing once again to a subsequence, we may also assume
that tx˚nun is a basic sequence and there exists a corresponding sequence txnun
in X such that x˚npxkq “ δnk for all n, k. Since tx˚nun is basic, it is linearly
independent. The biorthogonality condition from the Selection Principle shows
that txnun is also linearly independent.

rx2n`1sně0 Ď prx˚2nsně0qK, so prx˚2nsně0qK is infinite dimensional. Further-
more, each x˚2k annihilates prx˚2nsně0qK, giving infinite codimensionality. Hence
prx˚2nsně0qK is a half-space.

From above, we see that by passing to another subsequence, we may assume
that tx˚nun is a basic sequence and Y “ prx˚nsně0qK “ prh

˚
nsně0qK is a half-space

of X.

If y P Y , then for each n ě 0,

h˚npTyq “ T˚h˚npyq “ pλnh
˚
n ´ e

˚qpyq “ ´e˚pyq. (40)

So, if Y Ď ker e˚, then h˚npTyq “ 0 for each n ě 0. In this case, TY Ď Y so Y
is T -invariant.

Otherwise, there exists some y0 P Y with y0  P ker e˚. Set f “ Ty0 and for

y P Y , define a scalar αy “
e˚pyq
e˚py0q

. Then, for each n ě 0,

h˚npTy ´ αyfq “ h˚npTy ´
e˚pyq

e˚py0q
fq

“ h˚npTyq ´
e˚pyq

e˚py0q
h˚npTy0q

“ ´e˚pyq `
e˚pyq

e˚py0q
e˚py0q

“ 0.

(41)

Hence for each y P Y , Ty´αyf P Y . Hence Ty P Y `spantfu and Y is T -almost
invariant with defect at most 1.

Combining the proofs of Theorems 4.2 and 4.4 and Corollary 4.3 with the above
result establishes the following result:

Theorem 5.4. Let X be a separable Banach space and T P BpXq. Then T has
an almost invariant half-space with defect at most 1.

Algebras and Lattices

We now discuss lattices of subspaces of a Hilbert space H and subalgebras of
BpHq. In particular, we look at properties of invariance and almost invariance
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held by these algebras and lattices. Though we restrtict our attention to Hilbert
spaces, some of these results will apply in the general Banach space case.

Definition 6.1. Let H be a Hilbert space. For two subspaces M and N of H,
we define the join and meet of M and N respectively by

M _N “M `N

M ^N “M XN
(42)

Definition 6.2. Let H be a Hilbert space. If A is a subset of BpHq, we define
the lattice of invariant subspaces of A by

LatA “ tM Ď H : M is a T -invariant subspace for all T P Au . (43)

If L is a collection of subspaces of H, we define the algebra of invariant
operators for LatL by

AlgL “
 

T P BpHq : M is a T -invariant subspace for all M P L
(

. (44)

We extend this notion to almost invariant subspaces as follows:

LataA “ tM Ď H : M is a T -almost invariant subspace for all T P Au (45)

Alga L “
 

T P BpHq : M is a T -almost invariant subspace for all M P L
(

.
(46)

We note some basic properties of Alg and Lat and check if they extend to their
almost invariant counterparts.

Proposition 6.3. Let H be a Hilbert space, A be a subset of BpHq, and L be a
collection of subspaces of H. Then

a) LatA is a complete lattice under the operations _ and ^;

b) AlgL is a WOT-closed subalgebra of BpHq;

c) L Ď Lat AlgL and A Ď Alg LatA;

d) Alg Lat AlgL “ AlgL and Lat Alg LatA “ LatA.

We will work towards an almost invariant analog of Proposition 6.3 and show
that properties c) and d) in fact still hold in that case. Unfortunately, in the
almost invariant setting, we lose completeness of LatA in property a) and lose
WOT-closure of AlgL in property b). In order to show the above, we first
require an alternative way to view almost invariant subspaces, shown by Assadi,
Farzaneh, and Mohammadinejad [7].
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Proposition 6.4. Let X be a Banach space, Y Ď X be a subspace and T P

BpXq. Y is T -almost invariant if and only if there exists a finite codimensional
subspace N Ď X such that T pY X Nq Ď Y . Moreover, if N is a subspace of
minimum codimension, then codimN is equal to the defect of Y .

Proof. Let Y be T -almost invariant and M be a minimal error space. As in
previous proofs (Proposition 1.4), we note the sum Y `M is direct.

Let q : X Ñ X{Y be the quotient map. Then qpMq is a finite dimensional
subspace of X{Y , and so there exists a subspace L1 Ď X{Y such that X{Y “
L1 ‘ qpMq. Since Y X M “ t0u, taking the preimage L “ q´1pL1q, we get
X “ L‘M and Y Ď L.

T´1L is a subspace of X since T is continuous and L is a subspace. Define
rT : X{T´1L Ñ X{L by rT px ` T´1Lq “ Tx ` L. This map is well defined and
injective, hence we get

codimT´1L “ dimX{T´1L ď dimX{L “ dimM ă 8. (47)

Set N “ T´1L. By Equation 47, N is finite codimensional. We also see that

T pY XNq “ T pY X T´1Lq Ď TY X L Ď pY `Mq X L “ Y. (48)

For the converse, suppose that N is a finite comdiensional subspace of X such
that T pY XNq Ď Y . We can pick N to be of minimal codimension.

X “ Y ` N , since otherwise, there would exists some x P XKpY ` Nq. If
this were the case, we can take N 1 “ N ` spantxu so Y X N 1 “ Y X N and
T pY XN 1q Ď Y but codimN 1 ă codimN , contradicting minimality.

By finite codimensionality of N , we can pick some finite dimensional subspace
M1 of X such that X “M1 ‘N and M1 Ď Y . Here,

TY “ T ppY XNq `M1q Ď T pY XNq ` TM1 Ď Y ` TM1 (49)

hence Y is T -almost invariant.

For the final assertion, let N be a subspace of minimal codimension such that
N Ě T´1L and k be the defect of Y under T . We have

k ď dimTM1 ď dimM1 “ codimN ď codimT´1L ď codimL “ dimM “ k.
(50)

With this alternative definition of almost invariance, we are able to prove the
almost invariant analog of Proposition 6.3.

25



Proposition 6.5. Let H be a Hilbert space, A be a subset of BpHq, and L be a
collection of subspaces of H. Then

a) LataA is a lattice under the operations _ and ^;

b) Alga L is a subalgebra of BpHq;

c) L Ď Lata Alga L and A Ď Alga LataA;

d) Alga Lata Alga L “ Alga L and Lata Alga LataA “ LataA.

Proof. a) It suffices to show that for some T P BpHq that the join and meet
of two T -almost invariant are also T -almost invariant.

Suppose TY1 Ď Y1 `M1 and TY2 Ď Y2 `M2 for finite dimensional sub-
spaces M1 and M2 of H. Then, T pY1 ` Y2q Ď Y1 ` Y2 `M1 `M2. Since
M1 and M2 are finite dimensional, so is M1 `M2, and so

T pY1 ` Y2q Ď Y1 ` Y2 `M1 `M2.

This shows Y1 _ Y2 is T -almost invariant.

By Proposition 6.4, there exist finite codimensional subspaces N1 and N2

of H such that T pY1 XN1q Ď Y1 and T pY2 XN2q Ď Y2. Hence

T pY1 X Y2 XN1 XN2q Ď T pY1 XN1q X T pY2 XN2q Ď Y1 X Y2.

This shows Y1 ^ Y2 is T -almost invariant.

b) It suffices to consider the case where L is a singleton. Say L “ tY u and
write Alga Y instead of Alga L.

Suppose that T1, T2 P Alga Y , then T1Y Ď Y `M1 and T2Y Ď Y `M2

for finite dimensional subspaces M1 and M2 of H. Then for α P C,

pT1 ` αT2qY Ď Y `M1 `M2

and
T1T2Y Ď T1pY `M2q Ď Y `M1 ` T1M2.

Since both M1 `M2 and M1 ` T1M2 are finite dimensional, Y is both
pT1`αT2q-almost invariant and pT1T2q-almost invariant. Hence Alga Y is
a subalgebra of BpHq.

c) Clearly every subspace M P L is T -almost invariant for each T P Alga L.
This shows the first containment. The second follows similarly.

d) By c), we get Alga Lata Alga L Ď Alga L. We get the other inclusion
by applying Part c) to the algebra Alga L. The other equality follows
similarly.
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To show why Proposition 6.5 cannot be a direct mirror of Proposition 6.3, we
provide counterexamples to the completeness of LataA and the WOT-closure
of Alga L.

Example 6.6. As a counterexample to the completeness of LataA, let H1 and
H2 be separable infinite dimensional Hilbert spaces. Let A be the singleton
containing the operator T P BpH1 ‘H2q of the form

T “

„

0 0
I 0



.

Fix an orthonormal basis te0, e1, e2, ¨ ¨ ¨ u for H1 and consider the chain of almost
invariant subspaces

 

rekskďn
(

n
. This chain is not complete since H1 is not T -

almost invariant.

Example 6.7. To show that Alga L is not WOT-closed in general we use the
scalar-plus-finite-rank characterization (Proposition 3.2).

Let L be the lattice of all subspaces of an infinite dimensional separable Hilbert
space H. The scalar-plus-finite-rank characterization shows that Alga L are
exactly the scalar-plus-finite-rank operators in BpHq.

Consider a Donoghue operator D P Bp`2pNqq. D is compact, and hence is the
norm-limit of a sequence of finite rank operators. Being a weighted shift with
non-zero weights, the half-space rx2nsně0 is not D-almost invariant. This shows
that Alga L is not norm-closed, and hence not WOT-closed either.

Reflexivity

The counterexamples presented at the end of the previous section show that the
lattice of almost invariant subspaces and algebra of almost invariant operators
are weaker notions than their invariant counterparts. This is somewhat to be
expected since we gain the freedom to perturb by finite dimensional subspaces
and finite rank operators.

Despite losing completeness of the lattice and WOT-closure of the algebra, we
continue to study this idea and extend it to reflexivity before looking at other
properties of reflexivity. As in the previous section, we restrict our attention to
Hilbert spaces, though some of the ideas that follow are applicable to general
Banach spaces.

We start with some preliminary definitions and propositions reagarding the
notion of reflexivity for subspaces and algebras.
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Definition 7.1. Let H be a Hilbert space. For a subspace S of BpHq, define

RefS “
 

T P BpHq : Th P rShs for all h P H
(

. (51)

We refer to RefS as the reflexive closure of S.

Proposition 7.2. Let H be a Hilbert space and S be a subspace of BpHq. Then

a) RefS is a SOT-closed subspace of BpHq;

b) Ref RefS “ RefS;

c) If S˚ “
 

T˚ P BpHq : T P S
(

, then RefS˚ “ pRefSq˚.

Proof. a) It is clear that RefS is a subspace of BpHq, thus it is convex. We
show that RefS is WOT-closed, hence SOT-closed.

Let tTαuα be a net in RefS and suppose that Tα Ñ
WOT T . Fix h P H.

For each g P rShsK we have xTαh, gy “ 0 for each α. Since Tα Ñ
WOT T ,

it follows that xTh, gy “ 0 and hence Th P rShs.

b) It is clear that S Ď RefS and hence RefS Ď Ref RefS. For the other
inclusion, suppose that T P Ref RefS. By definition, for every h P H, Th P
rRefShs. Hence there is a sequence tAnun in RefS such that AnhÑ Th.
Since each An P RefS, An P rShs, and so Th P rShs. Since this holds for
arbitrary h P H, T P RefS.

c) Suppose that T P RefS. Consider T˚ and fix h P H. For any g P rS˚hsK,
we have for each A˚ P S˚, xA˚h, gy “ 0 “ xh,Agy. This shows h P rSgsK.
Since T P RefS, if follows that xh, Tgy “ 0 “ xT˚h, gy, and T˚h P rS˚hs.
Since h was arbitrary, we get T˚ P RefS˚, giving pRefSq˚ Ď RefS˚. We
get the other inclusion since pRefS˚q˚ Ď RefS˚˚ “ RefS.

Proposition 7.3. Let H be a Hilbert space. If A is a subalgebra of BpHq that
contains the identity, then Alg LatA “ RefA.

Proof. Let T P RefA and M P LatA. For any h P M , Th P rAhs Ď M . So
T P Alg LatA.

For the other inclusion, assume that T P Alg LatA and h P H. Since A contains
the identity, h P rAhs and rAhs P LatA. This shows that Th P rAhs and hence
T P RefA.

With the definition of reflexive closure and the previous propositions, we are
now able to define reflexivity of subspaces and subalgebras of BpHq.
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Definition 7.4. Let H be a Hilbert space. A subspace S of BpHq is reflexive
if S “ RefS. A single operator T P BpHq is reflexive if the WOT-closed algebra
generated by T and the identity is reflexive.

By Proposition 7.3, we see that a subalgebra A of BpHq containing the identity
is reflexive if A “ Alg LatA. We define reflexivity of lattices of subspaces of H
similarly: A lattice L of subspaces of H is reflexive if L “ Lat AlgL.

We also extend the notion of reflexivity to the almost invariant setting. We shall
say a subalgebra A of BpHq is almost reflexive if A “ Alga LataA. Similarly,
a lattice L of subspaces of H is almost reflexive if L “ Lata Alga L.

Proposition 7.5. Let H and Hn be a Hilbert spaces for each n.

a) If tSnun is a sequence of reflexive subspaces with Sn Ď BpHnq for each n,
then ‘nSn is reflexive;

b) If tSnun is any collection of reflexive subspaces with Sn Ď BpHq for each
n, then

Ş

n Sn is reflexive.

Proof. a) Note that if S “ ‘nSn and H “ ‘nHn, then rShns Ď Hn for
any hn P Hn. So, if T P RefS, THn Ď Hn for each n. This means T
decomposes as a direct sum T “ ‘nTn. Tn P RefSn for each n, and since
each Sn is reflexive, Tn P Sn. This shows that T P S.

b) If S “
Ş

n Sn and T P RefS, then Th P rShs Ď rSnhs for every vector
h P H. Hence T P RefSn “ Sn for each n and so T P S.

In the almost reflexive setting (restricting our attention to algebras), we see that
b) still holds while a) does not. We present a counterexample to a) first before
proving b).

Example 7.6. LetH be an infinite dimensional separable Hilbert space. By the
scalar-plus-finite-rank characterization (Proposition 3.2), given any collection L
of subspaces of H, Alga L will contain all scalar-plus-finite-rank operators in
BpHq.

Consider H ‘H and choose any almost reflexive algebras A1 and A2 in BpHq.
The observation above notes that Alga LataA1 ‘ A2 contains all scalar-plus-
finite-rank operators in BpH‘Hq.
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Any operator T P A1 ‘A2 would have the form

T “

„

T11 0
0 T22



where T11 P A1 and T22 P A2. However, there exists finite rank operators in
BpH‘Hq with the form

F “

„

0 0
F12 0



where F12 is finite rank. Clearly F  P A1 ‘ A2 hence A1 ‘ A2 is not almost
reflexive.

The previous example does not bode well for the notion of almost reflexivity
since even finite direct sums of almost reflexive algebras are in general not almost
reflexive.

Proposition 7.7. Let H be a Hilbert space. If tAnun is any collection of almost
reflexive algebras with An Ď BpHq for each n, then

Ş

nAn is almost reflexive.

Proof. By Part c) of Proposition 6.5,
Ş

nAn Ď Alga Lata
Ş

nAn. For the other
containment, note that for each k, we have

Ş

nAn Ď Ak. Hence LataAk Ď
Lata

Ş

nAn, and Alga Lata
Ş

nAn Ď Alga LataAk “ Ak, where the final equal-
ity comes from almost reflexivity. Since Alga Lata

Ş

nAn Ď Ak for each k, the
result follows.

Remark 7.8. It is at this point where I am unsure on whether this notion
of almost reflexivity is useful. Nice properties that reflexive algebras hold are
not shared by almost reflexive algebras and as previously stated, the lattice of
almost invariant subspaces not being complete as well as the algebra of almost
invariant operators not being WOT-closed will pose issues.

Altering the definition of almost reflexivity could make it a better idea to study,
however it is unclear on what the best way to approach a new definition would
be. One possible idea would be to restrict the size of the defects by defining
something such as

Alg kL “ tT P BpHq : M is a T -almost invariant subspace

with defect at most k for all M P Lu

for some k ě 1.

There are some issues with the above as it is not clear whether Alg kL is a
subspace of BpHq. Even if it were, we know the existence of operators T without
invariant half-spaces that have almost invariant half-spaces with defect at most
1. If Y were a T -almost invariant half-space, then TY Ď Y ` F for some
1-dimensional subspace F . It follows that T 2Y Ď Y ` F ` TF . TF cannot
be contained in Y ` F , otherwise Y ` F would be an invariant half-space.
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Continuing this process k times, we eventually see that T k`1  P Alg kL and that
Alg kL is in general not an algebra.

We now prove a few more properties of reflexivity.

Proposition 7.9. Let H be a Hilbert space. Every 1-dimensional subspace of
BpHq is reflexive.

Proof. Let S “ spantT u for some non-zero T P BpHq. If A P RefS, then for
every vector h P H, Ah P rShs “ spantThu. Hence there exists a scalar αphq
such that Ah “ αphqTh.

For vectors g, h P H,

Ag “ αpgqTg

Ah “ αphqTh

Apg ` hq “ αpg ` hqpTg ` Thq.

(52)

By comparing the Equations (52), we see that there exists a single scalar α such
that Ah “ αTh for each h P H, and so A “ αT .

Indeed, to see this, we rearrange and substitute Equations (52) into each other
to get

αpgqTg “ Ag “ αpg ` hqTg ` rαpg ` hq ´ αphqsTh

αphqTh “ Ah “ αpg ` hqTh` rαpg ` hq ´ αpgqsTg.
(53)

Adding Equations (53) together and comparing it with Equations (52) shows
that

αpg ` hqpTg ` Thq ´ αpgqTg ´ αphqTh “ 0. (54)

Without loss of generality, we may assume that Tg ‰ 0 ‰ Th since otherwise we
may pick α to be any arbitrary scalar. If Tg and Th are linearly independent,
then Equations (53) show that αpgq “ αphq “ αpg ` hq.

Otherwise, we have Th “ γTg for some non-zero scalar γ. Equations (52) show
that αpγgq “ αpgq for all scalars γ. By scaling h appropriately, we may assume
that Th “ ´Tg. Substituting into Equation (54) yields αpgq “ αphq, giving the
result.

Proposition 7.10. Let H be a Hilbert space. If S is a subspace of BpHq, then
pRefSqK is the closed linear span of the rank 1 operators it contains. Conse-
quently, a weak˚-closed subspace of BpHq is reflexive if and only if its preanni-
hilator is the closed linear span of the rank 1 operators it contains.
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Proof. We first show that SK and pRefSqK have the same rank 1 operators.
For g, h P H, we have g b h˚ P SK if and only if h P rSgsK. However, by
definition of RefS, we have rSgs “ rRefSgs, and so g b h˚ P SK if and only if
g b h˚ P pRefSqK.

Let X be the closed linear span of the rank 1 operators in SK. From the above
argument, X Ď pRefSqK. To show the other containment, it suffices by the
Hahn-Banach Theorem to show that XK Ď ppRefSqKqK “ RefS, where the last
equality follows from the WOT-closure and hence weak˚-closure of RefS.

Let T P XK and g P H. If h P rSgsK, then g b h˚ P SK and hence g b h˚ P X .
Hence 0 “ trT pg b h˚q “ xTg, hy. Since h was arbitrary in rSgsK, Tg P rSgs
and so T P RefS.

For the second assertion, note that if S is weak˚-closed and SK “ pRefSqK,
then by weak˚-closure of S, S “ pSKqK “ ppRefSqKqK “ RefS.

Hyperreflexivity

Our extensions of certain notions to an almost invariant setting have thus far
been somewhat unsatisfactory. Nevertheless, we continue to study the notion of
hyperreflexivity. It is possible to try to extend the definition of hyperreflexivity
to the lattice of almost invariant subspaces, however it is unclear how well this
will hold up.

Definition 8.1. Let H be a Hilbert space. If S is a subspace of BpHq, we define
the quantity

αpT,Sq “ sup
!

‖QKTP‖ : P,Q are projections and QKSP “ t0u
)

. (55)

Lemma 8.2. Let H be a Hilbert space. If S is a subspace of BpHq, and P,Q
are projections then QKSP “ t0u if and only if gbh˚ P SK whevever g P P and
h P QK.

Proof. Suppose that QKSP “ t0u, then for each g P P and h P QK, xAg, hy “ 0
for each A P S. If h “ 0, then g b h˚ “ 0 P SK. Otherwise we may extend
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h0 “
h

‖h‖ to an orthonormal basis E of H and evaluate

trApg b h˚q “ trAg b h˚

“
ÿ

ePE
xpAg b h˚qe, ey

“
ÿ

ePE
xxe, hyAg, ey

“ xxh0, hyAg, h0y

“
1

‖h‖2
xAg, hy

“ 0.

(56)

Since this is true for each A P S, hence g b h˚ P SK.

To show the converse, we essentially reverse the above argument: If gbh˚ P SK,
then for each A P S, we get trApg b h˚q “ trAg b h˚ “ 0. If h ‰ 0, then we
may again extend h0 “

h
‖h‖ to an orthonormal basis E of H. Equation (56)

shows that xAg, hy “ 0 for each g P P and h P QK, hence QKSP “ t0u.

We now prove some properties of the quantity αpT,Sq.

Proposition 8.3. Let H be a Hilbert space. If S is a subspace of BpHq, then
for each T P BpHq

a) αpT,Sq ď distpT,Sq;

b) ‖T‖S “ αpT,Sq is a seminorm on BpHq;

c) αpT,Sq “ sup
 

|xTg, hy| : g b h˚ P ballSK
(

;

d) αpT,Sq “ 0 if and only if T P RefS;

e) If A is a subalgebra of BpHq containing the identity, then

αpT,Aq “ sup
!

‖PKTP‖ : P P LatA
)

. (57)

Proof. a) If A P S and P,Q are projections with QKSP “ t0u, then for each
T P BpHq,

‖QKTP‖ “ ‖QKpT ´AqP‖ ď ‖T ´A‖. (58)

Thus we see that αpT,Sq ď distpT,Aq for each A P S. The result follows.

b) This follows from ‖¨‖ being a norm on BpHq.

c) Let βpT,Sq “ sup
 

|xTg, hy| : g b h˚ P ballSK
(

. We note that if ‖gbh˚‖ “
‖g‖‖h‖ ď 1, then we may assume that ‖g‖ “ ‖h‖ ď 1. By Lemma 8.2,
when QKSP “ t0u, then g b h˚ P SK for g P P and h P QK. Hence

‖QKTP‖ “ sup
!

|xTg, hy| : g P ballP, h P ballQK
)

ď βpT,Sq. (59)
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So αpT,Sq ď βpT,Sq.

For the other inequality, if g b h˚ P SK with ‖g‖ “ ‖h‖ ď 1 and P,Q are
the projections onto spantgu and rSgs respectively, then QKSP “ t0u.
Also,

|xTg, hy| ď ‖QKTP‖ ď αpT,Sq. (60)

Thus βpT,Sq ď αpT,Sq.

d) By Part c), αpT,Sq “ 0 if and only if sup
 

|xTg, hy| : g b h˚ P ballSK
(

“

0. By Proposition 7.10, since pRefSqK is the closed linear span of the
rank 1 operators it contains, and SK and pRefSqK share the same rank
1 operators, it follows that αpT,Sq “ 0 if and only if T P ppRefSqKqK “
RefS.

e) Let δpT,Aq “ sup
 

‖PKTP‖ : P P LatA
(

. If P P LatA, then PKAP “

t0u, so δpT,Aq ď αpT,Aq.

Suppose P,Q are projections satisfying QKAP “ t0u. Let pP be the pro-

jection onto rAPHs. QK pP “ 0 hence pP Ď Q. Since A is an algebra, it

follows that pP P LatA. Since A contains the identity, P Ď pP .

For any h P H,

‖QKTPh‖2 “ xQKTPh,QKTPhy
“ xQKTPh, TPhy

ď x pPKTPh, TPhy

“ x pPKT pPPh, T pPPhy

“ ‖ pPKT pPPh‖2

ď ‖ pPKT pP‖2‖Ph‖2.

(61)

This shows that ‖ pPKT pP‖ ě ‖QKTP‖ and so δpT,Aq ě αpT,Aq.

Definition 8.4. Let H be a Hilbert space. A subspace S of BpHq is called
hyperreflexive if there exists a constant c such that for each T P BpHq,

distpT,Sq ď cαpT,Sq. (62)

To make the importance of the constant c in Equation (62) explicit, in this case,
we will say that S is hyperreflexive with constant c. We also let κpSq be
the infimum of all such constants c. Equation (62) and Part a) of Proposition
8.3 together tell us that

αpT,Sq ď distpT,Sq ď cαpT,Sq. (63)

Hence αp¨, Sq and distp¨, Sq are equivalent seminorms on BpHq.
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As in the definition of reflexivity, we say an operator T is hyperreflexive with
constant c if the WOT-closed algebra generated by T and the identity is hyper-
reflexive with constant c.

Example 8.5. Consider the diagonal operators Dn with respect to a fixed
orthonormal basis in an n-dimensional Hilbert space H.

It is clear that D1 is hyperreflexive with constant 1 since in this case, every
operator is diagonal.

If H is 2-dimensional, we can calculate the values αpT,D2q and distpT,D2q for
arbitrary T P BpHq relatively easily.

Consider an arbitrary 2ˆ 2 matrix

T “

„

a b
c d



.

Quick calculations using the formula from Part e) of Proposition 8.3 will show
that

αpT,D2q “ max

#∥∥∥∥„0 b
0 0


∥∥∥∥,∥∥∥∥„0 0

c 0


∥∥∥∥
+

“ max
 

|b|, |c|
(

(64)

and that

distpT,D2q ď

∥∥∥∥„0 b
c 0


∥∥∥∥ “ max

 

|b|, |c|
(

“ αpT,D2q. (65)

Equations (64) and (65) show that in the 2-dimensional case, the diagonal op-
erators D2 are hyperreflexive with constant 1.

Remark 8.6. Calculating αpT,Dnq and distpT,Dnq becomes much more com-
plicated in higher dimensions. For example, in the 3-dimensional case, for an
arbitrary matrix

T “

»

–

a b c
d e f
g h i

fi

fl ,

one can use the same method as before and calculate that

αpT,D3q “ maxt
a

|d|2 ` |g|2,
a

|b|2 ` |h|2,
a

|c|2 ` |f |2,
a

|g|2 ` |h|2,
a

|d|2 ` |f |2,
a

|b|2 ` |c|2u.
(66)

Calculating distpT,D3q in full generality is difficult, so one may use methods
such as Gershgorin’s Circle Theorem to achieve upper bounds for this value.

In light of the previous remark, we are still able to show that Dn is hyperreflexive
for any finite n. We will be able to produce an upper bound (though not
necessarily a good one) on κpDnq. The methods that follow come from work by
Bessonov et al. [13] and by Klís and Ptak [14].
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Lemma 8.7. Let H be a Hilbert space. If S is a subspace of BpHq and T P BpHq,
then

αpT,Sq “ sup
‖x‖ď1

inf
APS

 

‖pT ´Aqx‖
(

. (67)

Proof. Note that infAPS
 

‖pT ´ Sqx‖
(

“ ‖QKTx‖ where Q is the projection
onto rSxs. If ‖x‖ ď 1 and we pick P to be the projection onto spantxu,
we see that ‖QKTx‖ ď ‖QKTP‖. Since QKSP “ t0u, we have αpT,Sq ě
sup‖x‖ď1 infAPS

 

‖pT ´Aqx‖
(

.

If P,Q are projections with QKSP “ t0u and ε ą 0, we may pick x P PH such
that ‖x‖ “ 1 and ‖QKTx‖ ě ‖QKTP‖´ ε. For A P S,

‖pT ´Aqx‖ ě distpTx,QHq “ ‖QKTx‖ ě ‖QKTP‖´ ε. (68)

Since ε was arbitrary, we get the result by taking the supremum over all projec-
tions P,Q with QKSP “ t0u.

We now prove a hyperreflexive version of Proposition 7.5, which will show that
the direct sum of hyperreflexive subspaces is still hyperreflexive.

Proposition 8.8. Let H1 and H2 be Hilbert spaces. Let S1 and S2 be subspaces
of BpH1q and BpH2q respectively. If T1 P BpH1q and T2 P BpH2q, then

a) max
 

distpT1,S1q,distpT2,S2q
(

“ distpT1 ‘ T2,S1 ‘ S2q;

b) max
 

αpT1,S1q, αpT2,S2q
(

ď αpT1 ‘ T2,S1 ‘ S2q ď αpT1,S1q ` αpT2,S2q;

c) S1 ‘ S2 is hyperreflexive if and only if both S1 and S2 are, and

max
 

κpS1q, κpS2
(

q ď κpS1 ‘ S2q ď 1` 2 max
 

κpS1q, κpS2q
(

. (69)

Proof. a) We compute that

distpT1 ‘ T2,S1 ‘ S2q2

“ inf
A1PS1
A2PS2

sup
‖x1‘x2‖ď1

!

‖pT1 ´A1qx1‖2 ` ‖pT2 ´A2qx2‖2
)

ě inf
A1PS1

sup
‖x1‖ď1

!

‖pT1 ´A1qx1‖2
)

“distpT1,S1q2.

(70)

The same will hold if we had used the index 2 instead of 1 in the last two
lines of Equation (70).
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We also see that

distpT1 ‘ T2,S1 ‘ S2q2

“ inf
A1PS1
A2PS2

sup
‖x1‘x2‖ď1

!

‖pT1 ´A1qx1‖2 ` ‖pT2 ´A2qx2‖2
)

ď inf
A1PS1
A2PS2

sup
‖x1‖ď1
‖x2‖ď1

max
!

‖pT1 ´A1qx1‖2, ‖pT2 ´A2qx2‖2
)

ďmax
!

distpT1,S1q2,distpT2,S2q2
)

.

(71)

b) Using Lemma 8.7, we get

αpT1,S1q “ sup
‖x1‖ď1

inf
A1PS1

 

‖pT1 ´A1qx1‖
(

“ sup
‖x1‖ď1

inf
A1PS1
A2PS2

 

‖pT1 ‘ T2 ´A1 ‘A2qpx1 ‘ 0q‖
(

ď αpT1 ‘ T2,S1 ‘ S2q
ď αpT1 ‘ 0,S1 ‘ S2q ` αp0‘ T2,S1 ‘ S2q.

(72)

The last inequality follows as by Part b) of Proposition 8.3, αp¨,S1 ‘ S2q
is a seminorm. We also have

αpT1 ‘ 0,S1 ‘ S2q

“ sup
‖x1‘x2‖ď1

inf
A1PS1
A2PS2

!

‖pT1 ´A1qx1‖2 ` ‖A2x2‖2
)

“ sup
‖x1‖ď1

inf
A1PS1

!

‖pT1 ´A1qx1‖2
)

“αpT1,S1q2.

(73)

Again, swapping the indices 1 and 2 will not change the validity of Equa-
tion (73), so the result follows.

c) Suppose first that S1 ‘ S2 is hyperreflexive. Then

distpT1,S1q “ distpT1 ‘ 0,S1 ‘ S2q
ď κpS1 ‘ S2qαpT1 ‘ 0,S1 ‘ S2q
“ κpS1q ‘ S2qαpT1,S1q.

(74)

Similarly, we conclude that distpT2,S2q ď κpS1‘S2qαpT2,S2q. This gives
max

 

κpS1q, κpS2q
(

ď κpS1 ‘ S2q.

In order to continue, we first need to prove some other preliminary results.
We will return to this proof after doing so.
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Proposition 8.9. Let H be a Hilbert space. If S is a hyperreflexive subspace
of BpHq, then S is reflexive. In particular, every hyperreflexive subspace is
WOT-closed.

Proof. If T P RefS, then by Part d) of Proposition 8.3, αpT,Sq “ 0. Hyper-
reflexivity of S implies that distpT,Sq ď cαpT,Sq “ 0. Hence T P S and S is
reflexive.

WOT-closure of S follows from Part a) of Proposition 7.2.

Lemma 8.10. Let H be a Hilbert space. Let S be a hyperreflexive subspace of
BpHq with constant c1. Let L be a subspace of S such that for any A P S, the
following holds:

distpA,Lq ď c2αpA,Lq (75)

for some constant c2. Then L is hyperreflexive and κpLq ď c1 ` c2 ` c1c2.

Proof. Let T P BpHq. For each A P S, we get distpT,Lq ď ‖T ´A‖`distpA,Lq.
Since S is hyperreflexive with constant c1, by Proposition 8.9, S is WOT-closed,
hence weak˚-closed. This shows that the distance between T and S is attained
by some A P S. Hyperreflexivity of S and L Ď S then imply that

‖T ´A‖ “ distpT,Sq ď c1αpT,Sq ď c1αpT,Lq. (76)

Combining the above yields

distpT,Lq ď ‖T ´A‖` distpA,Lq
ď c1αpT,Lq ` c2αpA,Lq
ď c1αpT,Lq ` c2αpA´ T,Lq ` c2αpT,Lq
ď pc1 ` c2qαpT,Lq ` c2distpA´ T,Lq
ď pc1 ` c2qαpT,Lq ` c2‖A´ T‖
ď pc1 ` c2qαpT,Lq ` c1c2αpT,Lq
“ pc1 ` c2 ` c1c2qαpT,Lq.

(77)

Lemma 8.11. Let H1 and H2 be Hilbert spaces. Then BpH1q ‘ BpH2q is a
hyperreflexive subalgebra of BpH1 ‘H2q with constant 1.

With Lemmas 8.10 and 8.11, we are now able to complete the proof of Propo-
sition 8.8.

Proof of Proposition 8.8 Part c). What remains is to show that if S1 and S2 are
hyperreflexive, then so is S1‘S2 and that κpS1‘S2q ď 1`2 max

 

κpS1q, κpS2q
(

.
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Let T1 ‘ T2 P BpH1q ‘ BpH2q and suppose that S1 and S2 are hyperreflexive.
From Part a), distpT1 ‘ T2,S1 ‘ S2q “ max

 

distpT1,S1q,distpT2,S2q
(

. Hyper-
reflexivity gives,

distpT1,S1q ď κpS1qαpT1,S1q
distpT2,S2q ď κpS2qαpT2,S2q.

(78)

Combining the above, we get

distpT1 ‘ T2,S1 ‘ S2q “ max
 

distpT1,S1q,distpT2,S2q
(

ď max
 

κpS1qαpT1,S1q, κpS2qαpT2,S2q
(

ď max
 

κpS1q, κpS2q
(

max
 

αpT1,S1q, αpT2,S2q
(

ď max
 

κpS1q, κpS2q
(

αpT1 ‘ T2,S1 ‘ S2q.

(79)

We may now apply Lemmas 8.10 and 8.11 to see that S1 ‘ S2 is hyperreflexive
and κpS1 ‘ S2q ď 1` 2 max

 

κpS1q, κpS2q
(

.

Example 8.12. With Proposition 8.8, we can show that the diagonal oper-
ators Dn with respect to a fixed orthonormal basis in finite dimensions are
hyperreflexive. In particular, we may write the 3 ˆ 3 diagonals D3 as the
direct sum D3 “ D1 ‘ D2. By Example 8.5, κpD1q “ κpD2q “ 1, and so
κpD3q ď 1` 2p1q “ 3. Similarly, D4 “ D2 ‘D2 and so κpD4q ď 1` 2p1q “ 3 as
well.

Remark 8.13. The bounds that we get from this decomposition are not great as
they increase quite quickly as the dimension of the Hilbert space increases. It has
been shown that there are tighter bounds for the constants of hyperreflexivity

for each Dn. Results by Davidson and Ordower [15] show that κpD3q “

b

3
2

and that
b

4
9

?
2` 1 ď κpD4q ď

3
2 . Another result by Rosenoer [16] shows that

κpDnq ď 2 for each n ě 1.
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